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Abstract

A numerical method is developed for the inversion of Laplace transform, and its accuracy is shown through
examples. As an application of the method, the transient analysis of a piezoelectric laminate with multiple interfacial
cracks is performed. Both the permeable and impermeable boundary conditions are discussed. The solution procedures
are based on the use of integral transforms, singular integral equations and Chebyshev polynomial expansions.
Numerical results are provided to show the effect of crack geometry, applied electric fields, electric boundary conditions
along the crack faces and the wave fronts of incident waves or the reflecting waves from surface boundaries on the
resulting dynamic stress intensity factor and electric displacement intensity factor.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing usage of piezoelectric materials and composites as actuating and sensing devices in
advanced structural design to form a self-controlling and self-monitoring smart system, much attention has
been paid to the study of their dynamic fracture behavior in recent years. A comprehensive body of
knowledge exists addressing the responses of cracked piezoelectric materials and composites subjected to
steady state loading, and efforts have been made to achieve an in depth understanding of the electro-elastic
failure mechanism of the materials and composites with one single crack (see, e.g., Narita and Shindo, 1998,
1999), or with multiple cracks (see, e.g., Meguid and Wang, 1998; Wang and Meguid, 2000; Wang, 2001) as
well as with debonding (see, e.g., Zhao and Meguid, 2002).
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In engineering applications, piezoelectric materials and composites are often subjected to transient
loading, such as impact, explosion, and transient electric fields. However, very few works are concerned
with the transient response of cracked piezoelectric materials and composites. Among the limited studies, Li
and Mataga (1996a,b) investigated the problem of a semi-infinite crack propagating in an infinite piezo-
electric medium. They studied the effect of the propagating velocity of the crack on the crack tip fields.
Chen and Yu (1997), Chen and Karihaloo (1999) investigated the transient response of a finite crack in an
infinite piezoelectric medium under the action of anti-plane mechanical loads and in-plane electric dis-
placements. Meguid and Chen (2001), Wang and Yu (2000), and Shin et al. (2001) considered the dynamic
crack problem in a piezoelectric strip under electro-mechanical impact. Wang et al. (2000) analyzed a
cracked piezoelectric laminate subjected to electro-mechanical impact loads. In their recent work, Meguid
and Zhao (2002) studied the interface crack problem of bonded piezoelectric and elastic half space under
transient electro-mechanical loads.

From the analyses concerning the transient response of cracked piezoelectric materials and composites, it
can be seen that Laplace transform is usually utilized to suppress the dependence on time. In the transform
domain, the boundary value problems may be reduced to dual integral equations or a set of coupled
singular integral equations, which are solved by using the Copson—Sih’s method or Chebyshev polynomial
expansions. To invert the solutions to the physical plane, the inversion of Laplace transform must be made.

Presently, over twenty methods have been developed for the inversion. Among them both the Miller/
Guy’s method and the Durbin’s method were widely used in the field of dynamic fracture mechanics (see,
e.g., Chen and Yu, 1997; Chen and Karihaloo, 1999; Meguid and Chen, 2001; Wang and Yu, 2000; Shin
et al., 2001; Wen et al., 1996a,b). Narayanan and Beskos (1982) made a comparison study of these methods
and found that the best one of them is the Durbin’s method (Durbin, 1974). Though the Miller/Guy’s
method has been used in most of the existing studies concerning the dynamic fracture of piezoelectric
materials due to its simplicity, it is shown that this method cannot achieve good results and its accuracy is
usually poor in numerical calculation.

In the author’s practice, both the Miller/Guy’s method and the Durbin’s method were used to inves-
tigate the dynamic crack problems of piezoelectric materials. It was found that the Miller/Guy’s method
gave diverging and inaccurate results when a finite geometry was present (Meguid and Zhao, 2002). In
fact, the Miller/Guy’s method is based on the expansion of orthogonal polynomials which are smooth,
and therefore cannot describe correctly the interaction between cracks and the wave fronts of incident
waves or the reflecting waves from surface boundaries with only a few of expansion terms. Theoretically,
this drawback may be overcome by increasing the number of the terms. But, when the number exceeds 11,
the coefficients of the expansion become so small that a numerical instability happens. Moreover, this
method strongly depends on the choice of two parameters, and different choices may lead to quite dif-
ferent solutions.

As Naraynan and Beskos tested, the Durbin’s method can give reliable results in most cases. However,
this method still suffers from one drawback for long time inversion. Namely, the inversion may become
highly oscillatory or get away from the right solution with the increase of time in some cases.

In the present paper, an accurate method is developed for the inversion, which overcomes the drawback
of the Durbin’s method. Numerical results show that the proposed method can achieve more reliable
inversion than the Durbin’s method for long time inversion.

As an application of the method, the transient analysis of a piezoelectric laminate with multiple inter-
facial cracks is performed. Both the permeable and impermeable boundary conditions are discussed. The
solution procedures are based on the use of integral transforms, singular integral equations and Chebyshev
polynomial expansions. Numerical results are provided to show the effect of crack geometry, applied
electric fields, the electric boundary conditions along the crack faces, incident waves and the reflecting
waves from surface boundaries on the resulting dynamic stress intensity factor and electric displacement
intensity factor.
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2. Numerical inversion of Laplace transform
2.1. Method

Suppose that f(¢) is a real function of ¢, with f'(¢#) = 0 for + < 0. The Laplace transform of the function
and its inversion are defined as follows:

£(p) = / " f(0) exp(—pr)dr, (1)
=5 [ 7 explma, ©)

where p is the complex transform parameter and « is a real number greater than the real parts of all sin-
gularities of f/*(p).

When f*(p) becomes known, the inversion may be obtained with the theory of complex analysis.
However, in the field of dynamic fracture analysis, /*(p) is usually given at discrete points, and therefore the
integral in (2) cannot be analytically evaluated. As an alternative, numerical inversion is used.

Let p = o« + iw, then we have (Durbin, 1974)

f(0) = % /OOO Re[f" (o + iw)]dw for 1 =0, (3a)
f() = %(oct) /OO {Re[f"(a +iw)] cos wt — Im[f™ (o + iw)] sin wt} dw  for ¢ > 0. (3b)

Durbin (1974) developed a method to calculate the above integrals numerically, which can be written as

[0 zzexl;(“t)< —%Ref*(oc) +§0: {Re[f* <rx+1k2;>] coskz?nt

_Im{f*(a—&-ikz%)} sinkz%rt}>. (4)

Formula (4) is valid over the interval [0, 7], and is formally equivalent to the application of the trape-
zoidal rule to (3a) and (3b), with the integration step being 2n/T. Practically, the infinite series can only be
summed up to a number NSUM of terms.

For short time inversion, this method always gives good results. The reason is that a short time solution
depends mainly on the large value of the transform parameter p (according to the initial-value theorem),
which indicates that a large interval of w is needed to calculate the integrals in (3a) and (3b). In this case,
since the time length 7T is short, 2n/7 becomes large, and the summation in formula (4) covers a large
interval of w (with a fixed NSUM). Therefore, good results can be obtained.

However, the long time inversion with the method may become highly oscillatory or get away from the
right solution. As we know from the final-value theorem, a long time inversion depends mainly on the
initial value of p. That is to say, an accurate estimation of the integrals in (3a) and (3b) should be made over
the interval from 0 to a certain value of w, for example, w = 5.0. To achieve this, a small integration step is
required. But, for a given time length, 27/T is usually not small enough so that much error is induced.

This drawback arises from the use of a constant integration step. In fact, we do not need to do so. We
know that the transformed function f*(p) has the property

/") =0@™), lpl =00, m>0, ()
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which implies that |f*(p)| may become small as |p| tends to a certain value, for example, |p| = 50. This
property allows us to use different integration steps for calculating the integrals in (3a) and (3b) numeri-
cally, and thus, good accuracy can be achieved with much less effort. In the next, two algorithms are
developed.

Algorithm 1. Divide the integration interval into small sub-spaces, and denote the nodes with w;
(k=1,2,...,00). Then, the integrals in (3a) and (3b) become

I8 Wf+1
! Z / Re[f*(a + iw)]dw for 1 =0, (6a)
n k=1 @

exp

f(0) = /wkH{Re[f (o +iw)] cos wt — Im[f*(a + iw)] sinwt}dew  for £ > 0. (6b)

In each sub-space of [wy, w;1], we approximate Re[f*(« + iw)] and Im[f* (o 4 iw)] with linear functions
respectively, which are expressed as

: F.., —F,
Re[f* (o + iw)] & F + ——"% (0 — y), (7a)
W1 — Wy
) Gy — G
Im[f* (o + iw)] ~ Gy + LK () — wy), (7b)
Wypy1 — Wi
where
Fp = Re[f"(a+iax)],  Fi = Re[f" (¢ +iog1)], (8)
G, = Im[f*(oc + iwk)}; Gk+1 = Im[f* (OC + ia)k“)]. (9)

Substituting (7a) and (7b) into (6a) and making a direct integration, we have

7(0) ~ i (i + B ) A (10)

— 27

where Ay = Djey1 — Wy
The integral in (6b) can be evaluated by

exp(ot) = [ Fry1sinwyy it — Fysinayt  Fryy — F cOS w1t — COS oyt
f(0) ~ > +

e t Ay 2
Gry1Cos it — Grcosayt  Gryp — Gy Sin g, t — Sin wyt
+ - > . (11)
t Ay t
Noting that w; = 0, and both F}; and G, tend to zero as k — oo, we finally have
& (0f) = [ Fier1 — F Gy — Gy, . .

p Z [ an k (cos w41t — cos wyt) — HIA k (sin w1t — sin a)kt)] . (12)

=1 k

Formula (10) has the same precision as one when the trapezoidal rule is used. The error estimation for
(12) may be made as follows:
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o0 WOf+1 _
Error = exp() Z / {Re[f*(oc +iw)] — [Fk + y (0 — a)k)] } cos wtdw
(o) k

- 5 [ L o) - [ S 0 )| b sinondo
o k

o] WOf+1 2
_exp(w) Z / d & {Ref*[o+ i(wg + 0,40)]Hew — ) (@ — wiy) cos ot do

2

exp(ar) o= [ Im . 00 A i ord
_ Z ) @{mf [o + i(r + O A)] Hew — o) (0 — @) sinwtdw

k

3 2
- _ % Z <dd 5 {Re] [or + (e + akl‘k)]} cos (o + Ox i)t

d’ _ _
_ w {Imf* [OC + 1(a)k + leﬁk)]} Sil’l(CUk + leﬁk)l>, (]3)

where 0 < 9/(7 F)k, 9k17 F)kl < 1.

Algorithm 2. Supposing that R is a large real number, we have

f(0) = % I}im ! Re[f*(a + iw)]dw for =0, (14a)
= J,
1) = %(oct) ]gi / {Re[f"(a +iw)] cos wt — Im[f™ (o + iw)] sinwt} dw  for ¢ > 0. (14b)
—oo fo

Divide [0, R] into n small sub-spaces, and the nodes are given by 0 = v < 0 < -+ < @, < w,+; = R.
Then, (14a) and (14b) can be expressed approximately as

N—Z /wk+l Re[f*(a + iw)]dw fort=0 (15a)
f(t) =~ expn Z /(UM {Re[f*(a + iw)] cos wt — Im[f*(a + iw)] sinwt} dw for ¢ > 0. (15b)

In each sub-space of [w, wi1] (k=1,2,...,n), The functions Re[f* (o + iw)] and Im[f*(x + iw)] are
approximated with Subbotin-splines respectively, that is (Cheney and Kincaid, 1985)

. 1 1

Re[f*(ot + ICO)} ~ F;( + 5 (Zk+l + Zk)(w — ‘Ck) 2A (ZkJr] Zk)(a) — ‘L'k)z7 (163)
. 1

Imlf* (o +i0)] % Gi+ 5 (et + 10 = %) + 5. (e = B0 = )" (16b)

where
A = Wpy1 — W, (17a)
1
T = E(wk+1 + ), (17b)
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F, = Re[f" (o + ity)], (17¢)

Gy = Im[f* (o + ity)]- (17d)
Zi, (k=1,2,...,n+ 1) are determined by the following equations:

3A121 +A122:8(E —Fb), (183)

A1 Zpy + (A + M1) 2k + MiZiiy = 8(F — Fry)  (k=2,3,...,n), (18b)

3AnZn+l + AnZn = 8(F;t+l - E1)7 (18C)

where Fy = Re[f* (o + iw;)] and F, 1 = Re[f* (o + iw,41)].
Y, k=1,2,...,n+ 1) are determined by

34‘1Y]+A]Y2:8(G1 —G())7 (193)
A1 Yioy + 3(Ai + M) Y + Yy = 8(G — Gimy)  (K=2,3,...,n), (19b)
3AnYn+1 +4,Y, = 8(Gn+1 - Gn)a (190)

where Gy = Im[f* (o + iw)] and G, = Im[f*(a + iw,1)].
Using the expressions (16a) and (16b) and making a direct integration to (15a) and (15b), we have

f(0) z% > [Fk + %(Zkﬂ - Zk):| s (20a)
pa

f) = explaf) { Loty + tlzgz(t) - Z L [(Zis1 — Zi)(sin gyt — sin o)

s t = B A
+ (Y1 — Yi)(cos w1t — cos wkt)]}, (20b)

where

1 . 1 1
gi(t) = [Fn +§(Zn + 3Zn+1)4‘n] sinw, 1t + g(Yz +3n)4, - G + |G, +§(Yn +3Y,41)4, | cOS W, 11,

(21a)

gz(l) = —Zl + Zn+l COS W41t — Yn+1 sin W41t (21b)

Truncation error and interpolation error will be induced when using (20a) and (20b) for inversion. The
truncation error may be reduced as long as R is large enough. From the theory of spline functions, the
interpolation error due to (16a) or (16b) is of the order O(4 ) (Li and Qi, 1979), with
Amax = Max |wy.; — ay|. Therefore, the error induced by (20a) or (20b) is of the order O(42_ ).

2.2. Examples

From formulas (10), (12), (20a) and (20b), it is seen that the lengths of all sub-spaces can be different,
which allows us to achieve good accuracy with less effort. Moreover, these formulas are derived from the
definition of an integral. Therefore, the summations in the formulas are always convergent when A,,x — 0
and n — oo.
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For practical applications, both 4,,,, and » are finite, and thus truncation error and interpolation error
are induced. Further, the errors are amplified by the factor exp(af)/m in (12) and (20b), which means that
the errors tend to be infinite with the increase of time. To overcome this drawback, we fix 7 to a definite
value, with T being the time length of inversion. In this way, the errors can always be kept in a reasonable
range when ¢ < 7. Then, the parameter o is determined. According to the definition of Laplace transform
and its inversion, « is a real number greater than the real parts of all singularities of f*(p). We have tried
many cases and found that good results can be obtained if it is taken as

5
o = max[Re(p,)] + T
where p; (i = 1,2,...) express all singular points of f*(p). The same « is also used in the Durbin’s method.

Three examples are given here:

Example 1. f*(p) = p~!, f(t) = H(?).
Example 2. /*(p) = p(p® + 1) %, £(£) = (¢/2) sin(z).
Example 3. /*(p) = (p—3)"", f(t) = exp(3¢).

The time lengths are chosen to be 7 = 20 for Examples 1 and 2, and 7 =4 for Example 3. In the
computation, the whole range of integration is divided into three intervals: [0,2.5], [2.5,37.5] and
[37.5,897.5]. A constant step 4; = 0.005 is used for all sub-spaces in [0, 2.5], while 4, = 0.5 and 4; = 2.0 are
taken for sub-spaces in [2.5,37.5] and [37.5,897.5], respectively. The total number of summations is 1000
terms.

Results are shown in Tables 1-3. It is shown that the present solutions agree well with exact ones.
However, the inversions of Examples 1 and 3 by using the Durbin’s method get away with the increase of
time.

Finally, it should be pointed out that the choice of integration steps has a great effect on the inversion.
Theoretically, smaller the integration steps are, more accurate the inversion will be. However, much
computation effort will be required, which is time consuming in the field of dynamic fracture mechanics.
For reference, we recommend the use of Table 4. To our practice, good accuracy can be obtained for t < T
with values in this Table. To achieve better results, smaller integration steps are needed.

3. Application in dynamic fracture analysis of a piezoelectric laminate
3.1. Problem statement

Consider the problem of a piezoelectric laminate containing » interfacial collinear cracks, as shown in
Fig. 1. A set of Cartesian coordinates (x, y,z) is chosen such that the x-axis is directed along the crack line
and y-axis is perpendicular to it. The poled piezoelectric strip, with the z-axis being the poling direction,
occupies the region (=4 <y < 0,—00 < x < +00).

In a previous paper (Zhao and Meguid, 2002), the author(s) discussed the dynamic behavior of the
laminate under steady-state electro-mechanical loading, and the dependency of both the local stress and
electrical fields at crack tips on frequencies of loading was examined. Here, the transient behavior of the
laminate is studied. Suppose that the laminate is initially stress free and at rest. At time ¢t = 0, a pair of
uniform shear stresses of 7oH(¢) suddenly appear on the surfaces of y = —h and 4 (—oo <x < +00),
respectively. A uniform in-plane electric displacement DyH(¢) is also applied on the lower surface of the
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Table 1

Inversion of the function f*(p) = p~!
t Algorithm 1 Algorithm 2 Durbin’s method Exact
0.00 0.50002454 0.49998200 0.50653049 1.00000000
1.00 0.99984388 0.99999402 1.00549358 1.00000000
2.00 0.99995698 1.00000370 1.00597629 1.00000000
3.00 1.00016226 1.00002421 1.00612267 1.00000000
4.00 0.99973049 1.00001323 1.00618855 1.00000000
5.00 1.00017907 0.99999158 1.00622859 1.00000000
6.00 0.99975946 0.99998448 1.00626599 1.00000000
7.00 0.99995896 0.99996924 1.00631770 1.00000000
8.00 0.99992645 1.00001701 1.00640245 1.00000000
9.00 0.99966112 1.00001107 1.00654564 1.00000000
10.00 1.00004361 1.00003587 1.00678511 1.00000000
11.00 0.99944320 0.99999743 1.00717982 1.00000000
12.00 1.00009414 0.99997066 1.00782468 1.00000000
13.00 0.99923983 0.99996375 1.00887807 1.00000000
14.00 0.99977563 0.99999187 1.01061669 1.00000000
15.00 0.99945386 1.00003359 1.01355593 1.00000000
16.00 0.99948358 1.00002965 1.01874996 1.00000000
17.00 0.99940670 1.00002235 1.02868949 1.00000000
18.00 0.99931966 0.99996898 1.05088628 1.00000000
19.00 0.99923481 0.99995546 1.12293998 1.00000000
20.00 0.99920029 0.99997784 75.17073028 1.00000000

Table 2

Inversion of the function f*(p) = p(p* + 1)~
t Algorithm 1 Algorithm 2 Durbin’s method Exact
0.00 —-0.00009131 0.00000218 0.06218747 0.00000000
1.00 0.42073715 0.42072545 0.47977090 0.42073549
2.00 0.90949537 0.90931095 0.90776061 0.90929743
3.00 0.21129895 0.21166887 0.14529924 0.21168001
4.00 —-1.51309243 —-1.51360309 —-1.58679915 —-1.51360499
5.00 —2.39762968 —-2.39729723 —-2.40758056 —-2.39731069
6.00 —0.83785428 —0.83827882 —-0.77051018 —0.83824649
7.00 2.29907174 2.29950339 2.38657029 2.29945310
8.00 3.95684237 3.95736997 3.98214155 3.95743299
9.00 1.85447616 1.85460021 1.78863406 1.85453318
10.00 —-2.71993636 —-2.72016580 —-2.82025465 —-2.72010555
11.00 —5.49808585 —5.49990224 —5.54135701 —5.49994614
12.00 —-3.21897264 —-3.21946065 —3.15882255 —-3.21943751
13.00 2.73054498 2.73109266 2.84272087 2.73108574
14.00 6.93118737 6.93426442 6.99415956 6.93425149
15.00 4.87496126 4.87712892 4.82541788 4.87715880
16.00 —-2.30199547 -2.30319122 —2.42416899 —-2.30322653
17.00 —8.16699679 —-8.17190744 —8.25152215 —8.17187868
18.00 —-6.75430215 —6.75886561 —6.71963241 —6.75888522
19.00 1.42278407 1.42382934 1.55131243 1.42383349
20.00 9.12178084 9.12944158 9.22943796 9.12945251

piezoelectric strip at y = —h and —oo < x < +o00. Further, it is assumed that the surface of the elastic
material is grounded.
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Table 3
Inversion of the function f*(p) = (p — 3)™"'
t Algorithm 1 Algorithm 2 Durbin’s method Exact
0.00 0.50011 0.49990 0.51845 1.00000
0.20 1.82371 1.82227 1.85388 1.82212
0.40 3.32303 3.31988 3.37964 3.32012
0.60 6.05297 6.04981 6.15908 6.04965
0.80 11.02414 11.02337 11.22347 11.02318
1.00 20.07887 20.08441 20.45160 20.08554
1.20 36.57620 36.60217 37.26702 36.59823
1.40 66.64184 66.67833 67.90862 66.68633
1.60 121.44564 121.52586 123.74642 121.51042
1.80 221.34950 221.38227 225.50364 221.40642
2.00 403.45759 403.44949 410.95599 403.42879
2.20 735.35683 735.08906 748.97798 735.09519
2.40 1340.13471 1339.32859 1365.18590 1339.43076
2.60 2441.93443 2440.91071 2488.80487 2440.60198
2.80 4448.95332 4446.31800 4538.50014 4447.06675
3.00 8104.69090 8104.66910 8280.18378 8103.08393
3.20 14,762.71065 14,762.56279 15,119.63179 14,764.78157
3.40 26,892.87570 26,906.51289 27,656.99986 26,903.18607
3.60 48,993.56258 49,019.90264 50,814.33716 49,020.80114
3.80 89,268.45788 89,315.76271 95,000.68321 89,321.72336
4.00 162,675.32300 162,779.5352 4,606,743.89267 162,754.79142
Table 4
Choice of integration steps
€ 0,5] w € [5,50] > 50
7<20 A< 3 ML E A=(1-2)%

ToH(t)

© © @ @ © & & _

Elastic material

ai b aq bq an bn

X
Piezoelectric material

TTTTYTY

ToH(t) DoH(t)

Fig. 1. Geometric configuration of the problem.

Because only the out-of-plane displacement and the in-plane electric fields are nonzero, the constitutive
relation for the piezoelectric material can be expressed as
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ow 0 ow 0
Tyz = C44& + elSO_f; Ty = C44a+ elsa—i» (22)
and
ow 0 ow 0
szelsa—lcna—f, Dy:ewa_xlla_ia (23)

where 1,. and 7. are the shear stress components, D, and D, are the electric displacements, w and ¢ are the
mechanical displacement and electric potential, while c44, e;5 and x; are the elastic modulus, the piezo-
electric constant and the dielectric constant of the piezoelectric material, respectively.
The governing equations are given by:
2 0w
o2t
where ¢; = \/ui/p, with p being the density of the piezoelectric material and y = cas + €l5/x11.
The constitutive relation for the elastic material can be written as

Viw =c; k1 Vi = e1sV>w, (24)

ow ow
Tyzl = Ca41 a—xl, Tyz1 = Ca41 6—)/1’ (25)

where 1,,; and t,,; are the shear stress components, w; and cs are the displacement and the elastic
modulus, respectively. The governing equation is

(26)

in which ¢2; = /¢y, /p; and p; = the density of the elastic material.

This problem can be treated as the superposition of two sub-problems. Sub-problem (a) considers a
crack-free piezoelectric laminate under the action of 7oH (¢) and DyH (¢) at y = —h (—o0 < x < +00), and the
action of 10H(¢) at y =h; (—oco < x < +00). While sub-problem (b) concerns a piezoelectric laminate
containing multiple interfacial cracks, with the crack faces subjected to the electro-mechanical loads that
cancel out the stress and the electric displacement induced by sub-problem (a).

Laplace transform over time 7 is used to solve those two sub-problems. The solution of sub-problem (a)
can be easily obtained and therefore the detailed calculation is omitted. In the transform domain, the stress
and the electric displacement along the interface are found to be

27083(p) — e1sDoga(p) ki

7,.(x,0,p) = 22s7) : (27)

D,(x,0,p) = Do/p, (28)
where

£5(p) = exp(ph/e2)[1 — exp(2phi fex)] + - exp(phi fex)[1 — exp(2ph/c2)] (29)

gs(p) = [1 = exp(2ph /ea)][1 — exp(ph/ca)]’ (30)

g5(p) = [1 = exp(2ph /ea)][1 + exp(2ph/ez)] + 2 [1 — exp(2ph/ea)][1 + exp(2pm/ca)].  (31)

C2C441

The solution of sub-problem (b) can be derived with the help of Fourier transform over the space
variable x. The governing equations (24) and (26) yield
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e =50 / 1(&;p) exp(—yy) + 4a2(E, p) exp(py)] exp(—iéx) d, (32)
¢ (x.yp) = Klj w(x,3,p) + ¥ (x,3,p), (33)
0 p) = o [ a(Ep)exp(—IeD) + A p)explleb)] exp(-ic0 e, (34)
witnp) = 5 [ As(E ) exp(—0) + A& explr)] exp(—ic0 e, (35)

where y = /& + p2c;?, y = /& + PPyt and 4;(¢,p) (= 1,...,6) are unknown functions.

By substituting the above expressions (32)—(35) into the constitutive relations, both the stresses and
electric displacements can be obtained.

To determine 4;(¢, p), we now consider the boundary conditions. For piezoelectric materials, the per-
meable and impermeable boundary conditions are usually used to model the electric boundary conditions
along the crack faces. From the physical viewpoint, these two boundary conditions represent two extreme
cases, with the permeable boundary condition being the case that the crack is completely conductive and
the impermeable boundary condition being the case that the crack is completely not conductive. Presently,
those two boundary conditions are examined and the corresponding discussions are presented in Sections
3.2 and 3.3, respectively.

3.2. Solution of the permeable crack problem

In this section, we consider the permeable crack problem. The boundary conditions in Laplace transform
domain can be written as

T, (x,h,p) =0, —o0 <x < o0, (36a)
1.1 (x,0,p) = 1,.(x,0,p), —o00<x< o0, (36b)
¢"(x,0,p) =0, —o0<x< 00, (36¢)
T.(x,0,p) = =7.(x,0,p), x € (ag,b,), (36d)
w'(x,0,p) = wi(x,0,p), x ¢ (agb,), (36¢)
r;z(x, —h,p) =0, —o00<x < 00, (36f)
D (x,—h,p) =0, —oo <x < o0, (36g)

where g =1,2,...,n
The solution procedure is similar to the paper of Zhao and Meguid (2002). If we introduce the following
dislocation function by defining:

A;(&,p) G=1,...,6) can be solved from the above boundary conditions and expressed with ¢;(x,p).
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Define that
x:bq;aqu+bq;‘aq:equ+dq, (38)
then ¢j(x,p) (k=1,2,...,n) must satisfy the following integral equation:
1 * n 1
(/’q(’%p) / (044 + C441)
—L——dn+ s u,p)pr(n,p)dnp = - ———————= 0 ul<1 (g=1,2,...,n),
L atl ; | Quln,up)oi (1 p) dn coom 5e(.0.p), Ul <1 (g )
(39)
and the single value condition
1
[ eionpan=0 (=12 (40)
where
_ 73 _ 5qk
qu(n,u,p) - e — equ + (dk IR dq) n—u
> [ (caa + can) i F2(S,p) :
— e + 1| sin[é(epn + di) — E(e,u + d,)]dE, 41
[l ewn + ) — Elequ +d,))d¢ (1)

Fi(é,p) = — 111 + exp(2yh)][1 — exp(2|E[R)][1 + exp(27,h1)]

[+ exp(2Ilm {1 + exp(2y,h)][exp(2yh) — 1] = cann [l — exp(2,n)][1 + exp(2h)]},
(42)

F(E,p) = [1 — exp(2y )] {wy[1 + exp(2|€[h)][exp(2yh) — 1] + efs/wulE|[1 — exp(2lEM][1 + exp(2yh)]},

(43)
bk — ay bk + ay
= =—. 44
(5% ) 5 dk ) ( )
The solution of Eq. (39) can be written as
k/(l’
E 45
(pk 1/’ p m ] ( )

where T;(n) are Chebyshev polynomials of the first kind and By;(p) are unknown functions of p. From the
orthogonality conditions of Chebyshev polynomials, the single value condition leads to Bjo(p) = 0.
Truncating the Chebyshev polynomials in Eq. (45) to the Nth term and assuming that Eq. (39) is satisfied at
N collocation points along the crack faces,

mmn
um_COS(N+1> (m=1,2,...,N). (46)

Eq. (39) is reduced to a linear algebraic system of equations of the following form:

N . " N
: mjn . mmn
;qu(P) sin (N_+ 1)/sm (N_+ 1) + kzzl: ;Bk,(p)quj(u,mp)

_ T 0p) (m=1,2,...,N and ¢=1,2,...,n), (47)
CasCasy
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where

qkj(um;p)— . nﬂqu(naumvp) n

Once B,;(p) are obtained from (47), 4;,(¢,p) (j=1,...,6) can be determined. Since the electric dis-
placement is continuous across crack faces, only the stress field at crack tips is singular. The dynamic stress
intensity factors of crack ¢ can be evaluated using the following expressions:

C44Ca1 ﬂ(b —a ) -
KR = lim /2n(x — b,)7(x,0,p) = — \ B,i(p), 49
111 xib T[( )TV\/z(x p) Cas +C441 2 jz:]: q](p) ( )
C44C441
K& =i 2 0 \/ 1)’B(p). 50
11 XH{? (ay — x)1,,(x,0,p) C44 ¥ can Z )'By;(p) (50)

3.3. Solution of the impermeable crack problem

(48)

Consider now the impermeable crack problem. The boundary conditions for the problem can be ex-
pressed as

T, (e, ,p) =0, —o0 < x < o0, (51a)
74(6,0,p) = 7,.(x,0,p), —00 <x < o0, (51b)
r;(x,O,p) = —f;z(x,O,p), x € (a4, b,), (5lc)
w'(x,0,p) = wi(x,0,p), x ¢ (agb,), (51d)
D;(x,(),p) =—-Dy/p, x € (a,b,), (51e)
¢ (x,0,p) =0, x¢(ayb,), (51f)
T (x,—h,p) =0, —oo<x< o0, (51g)
D (x,—h,p) =0, —oo0 <x < oo. (51h)

Introduce the following functions:

0
010 = 5 i 0p) w0 = {0 ) TE (ol (52)
* o _a¢*(x707p> _ 0 X ¢ (almbk)a
@5(x,p) = — x { @5 (x,p)  x € (ag,by). (53)

According to Eqgs. (51a)—(51h), 4;(¢,p) (j=1,...,6) can be expressed with @7, (x,p) and ¢}, (x,p). The
functions ¢;, (x,p) and @3, (x, p) must satisty the following singular integral equations:
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1 *
(plq(’/”p) €15 (qu(” p /
PP, 15 dn
[1 n—u ol + Z Onge(n, u, p) ey, (. p) dn
: " T(c4q + C . eis D
—Z/@mm%m%wmmszﬁ4@[gom =D <, (s4)
= J UCaq1 ki

1 *
i (n,p) k + @5, (1, P)
_/ lq dn + n (u 0441)/ 24 dn + E / a1k (n,u, p) @y, (n,p)dn
1 -1

n—u €15C441 n—
! T(Caq + caa1) Do
+ u, wp)dnp=——m"~—  |u| <1, 55
Z /_ | Qaage(,,p) 0, p) d = =2 =8, (55)
and the single value conditions:
1 1
/ ®1,(n,p)dn =0, / @5, (n,p)dn =0 (¢g=1,2,...,n), (56)
—1 -1
where
. €y _ 5qk
Qllqk("7u7p) _eknfequ+(dk*dq) n—u
o0 Cas +C .
- / €k {%an(f,}’) + 1} sin[é(exn + di) — E(eyu + d,y)]dE, (57)
0
615 €k 5qk
Qquk(”]a “ p) C441 |:€k17 — equ + (dk — d ) n— u]
o0 Cau+c
+ [T S ) - 2 sinletenn + )~ Slegu-+ d]dc (58)
0 Caq1 Ca41
_ € 5qk
Q21qk(’l7“7p) - ekn_equ+(d/c_dq)+n_u
[k (cas + caar) .
+ | e|——————Fau(&p) + 1| sin[l(exn + dy) — E(equ + dy)]dE, (59)
0 €15C44]
ki (u+ can) { € Ok }
, U, = -
Ongi (1, 4, 1) €15Caa e —equ+ (de—d;) n—u

< ki (cas + caar) kn(u+caan)] .
+/0 e {Wan(fap) - m} sin[E(exn + di) — E(equ + d,)]dE.
(60)

The expressions of a1 (&, p), ain(&, p), an (&, p) and axn(&, p) are the same as those of the paper of Zhao and
Meguid (2002).

In a similar fashion to Section 3.2, the functions ¢3,(y,p) and ¢, (i7,p) are defined in terms of the
Chebyshev polynomials:

@1 (n,p) = i \flk"———(_p),?ﬂ(n), @5 (n,p) = f: jlf’g%-z@ (61)
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From (56), it follows that B,y = Ey = 0. By;(p) and Ey;(p) can be determined from the following algebraic
equations:

N | sin <%) N | sin (}\'71’3) n N
Z . (1/(.p Z qj(P + ZLllqk] Um, P BA/(P)
sin ( 22 €441 7' | sin P i
<N+l) J (N+1) J
eis Dy

_ Z Z Lungey (i, ) Eiy(p) = — ST 41 [r;(u 0,p) +— } (62)

UCaq1 ki p

_XN: [sm(f)] B,(p) + b ( H+C441 XN: [ i

€15C44] =

= ) } Ey(p) + Xn: ZLzlqkj(um,P)Bkj(P)

n
Caq + ca Dy

N
> Loogij(m, p)Ery(p) = (g=1,2,...,n and m=1,2,...,N), (63)

=1 = €15Ca41 P

_|_

where
1

Lrsqkj(um7p) = . T[\/—‘Qrsqk naumap) ( )d’7 (I",S ’ ) (64)

The dynamic stress intensity factors and electric displacement intensity factors of crack ¢ are defined as
follows:

Kii = lim /2n(x = by),.(x,0, )

___H rt(qu—a )<_c44IZqu(p +615ZEq](p> eleR*(p) (65)

Ca4 + Cam

KE (p) = lim /2(x — 5,)D;(x,0,p)

1 (b, —a = =
= ( qz q)l—elsﬂmZqu(P)+k11(u+C441)Zqu(P)
j=1 J=1

C44 + Cas

Kiii(p) = lim y/2m(a, —x)7.(x, 0, p)

q

K n(bq — aq) - ;
N — 1YBy(p) - —1YE
Caa + Caa ﬁ Cant ;( By(p) — eis Z YE,;(p)
KE (p) = lim \/2x(a, — x)D; (x.0.p)

q

1 (b, — a = ;
= ( q2 q) |ﬁ]5€441 Z( — l)quj(p) k]] ,u—|—C441 Z — 1 ]Eq](p
j=1

Caq + Caa1 =

“W@ (67)

8

(68)
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3.4. Numerical results and discussion

Numerical calculations have been carried out to show the influence of the pertinent parameters. In the
following calculations, the piezoelectric material is assumed to be PZT-4, and the elastic material is alu-
minium. Their elastic, piezoelectric and dielectric properties are as follows (Narita and Shindo, 1999):

s = 2.56 x 10 N/m?,  e;s = 12.7 C/m%, &y, = 64.6 x 1071 C/vm, p = 7500 kg/m’;
Cq41 = 2.65 x 1010 1\]'/1’1'127 P = 2706 kg/m3

The convergence of the expansions in (45) and (61) has been checked by Zhao and Meguid (2002), and it
is found that good convergence can be reached when the expansion number exceeds 15 terms. In the present
case, 20 terms are used.

3.4.1. Single crack solution

In this section, we restrict our attention to the single crack solution. It is assumed that a¢; = —a and
b, = a. Numerical results are shown in Figs. 2-10. In these Figures, normalized parameters are used with
SIF = Kﬁl(l‘)/(fo\/ﬁ), EDIF = Kg(f)/(Doﬁ&), T = Czt/h and Dh = elsDo/(Kll’L'o).

Fig. 2 shows the comparison between the solutions obtained by using the Durbin’s method and the
present method. It is seen that before 7 = 12, two methods give comparable results. When 7' > 12, the
solution from the Durbin’s method begins to oscillate, while the present solution keeps stable.

The interaction between the crack and the incident waves or reflecting waves is also clearly shown.
Before 7" = 1, the incident wave from the lower surface does not arrive and SIF is zero. After the arrival of
the incident wave at 7 = 1, the SIF begins to rise with increasing time, and reaches a peak, then decreases
until the arrival of the first reflecting wave from the lower surface (7 = 3). The later period of time from
T =3to T = 8.1 sees the action of multiple reflecting waves. With the arrival of the incident wave from the
top surface, a rapid increase of the SIF is induced. The SIF reaches a maximum about 2.7 at 7 = 9.4, and
an indication is that the laminate may be damaged at this time.

Figs. 3-5 are concerned with the results of the permeable crack problem. Specifically, Fig. 3 presents the
influence of the strip height on the stress intensity factor. By reducing 4, the peak of the SIF will appear
earlier, which reflects the earlier arrival of the incident wave from the top surface. When #; = 24, an
oscillatory vibration is observed. Clearly, this is due to the continuous action of multiple reflecting waves.

In Fig. 4, the influence of the applied electric fields on the dynamic SIF history is shown. It is seen that
this effect varies with time. In the periods from 7 = 1 to 7' = 4 and from 7' = 8 to T' = 11, the SIF is induced
mainly by the electro-elastic waves from the piezoelectric material, and the action of the electric fields is

— Present method

-------- Durbin's method
1 | | | | T T T
0 2 4 6 8 10 12 14 16

Fig. 2. A comparison between solutions of the Durbin’s method and the present method assuming the permeable boundary condition
with 4 = 104, a/h = 0.5 and Dh = 0.
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Fig. 3. Normalized SIF versus normalized time for various /; assuming the permeable boundary condition with a/h = 0.5 and Di = 0.

0 2 4 6 8 10 12 14 16
T

Fig. 4. Normalized SIF versus normalized time for various electro-mechanical loads assuming the permeable boundary condition with
hy = 5h and a/h =0.5.

0 2 4 6 8 10 12 14 16
T

Fig. 5. Normalized SIF versus normalized time for various a/h assuming the permeable boundary condition with 4, = 5k and

Dh =0.5.

obvious, which may lead to the increase or decrease of The SIF. This means that both a positive electric
field and a negative electric field can retard or promote the propagation of a crack. The other periods of
time see mainly the action of the elastic waves from the upper strip, and as a result the effect of the electric

fields is negligible.
Fig. 5 displays the variation of the SIF with various a/h at Dh = 0.5.
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Fig. 6. Normalized SIF versus normalized time for various 4, assuming the impermeable boundary condition with a/h = 0.5 and

Dh = 0.

102 4 6 8 10 12 14 16
T

Fig. 7. Normalized SIF versus normalized time for various electro-mechanical loads assuming the impermeable boundary condition

with i = 5h and a/h = 0.5.

102 4 6 8 10 12 14 16
T

Fig. 8. Normalized SIF versus normalized time for various a/h assuming the impermeable boundary condition with 4, = 5k and

Dh=0.5.

Figs. 6-9 are concerned with the results of the impermeable crack problem. Generally, similar obser-
vations may be made from Figs. 6-8. In Fig. 7, one can see that the SIF may be induced by electric fields
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15

EDIF

0
0 2 4 6 8 10 12 14 16

T

Fig. 9. Normalized EDIF versus normalized time for various a/# assuming the impermeable boundary condition with #; = 5k and
Dh =0.5.

— Impermesble

0O 2 4 6 8 10 12 14 16
T

Fig. 10. A comparison between solutions of the permeable and impermeable boundary conditions for #; = 5h, a/h = 0.5 and Dh = 0.5.

alone, which is shown before the arrival of the incident electro-elastic waves. It is noticed that at 7 = 0 the
SIF has a jump and then keeps almost a constant. From Figs. 6 and 8, one can deduce the influence of the
strip height and a/h on the SIF history, respectively.

Fig. 9 displays the time history of the electric displacement intensity factor with various a/h at Dh = 0.5.
In this Figure, a dynamic overshoot phenomenon is observed. Moreover, the phenomenon is intensified
with the increase of a/h. This is quite different from the earlier results obtained in Chen and Yu (1997),
Chen and Karihaloo (1999), Meguid and Chen (2001), Wang and Yu (2000), and Wang et al. (2000), where
the electric displacement intensity factor is in the form of a Heaviside step function.

Finally, a comparison between the solutions of the local stress field for the permeable and impermeable
conditions is made in Fig. 10. Obviously, one can see the difference induced by the two electric boundary
conditions along the crack faces. However, the difference is not as significant as it is usually thought to be in
this case.

3.4.2. Interacting cracks

We now present the results of the two-crack solution. It is assumed that a; = —a, b; = a, a, = 2a and
by = 4a. The resulting SIF and EDIF at the inner tip of crack one are shown in Figs. 11-13. The corre-
sponding single crack solution is also depicted for comparison.

It is seen from Figs. 11 and 12 that for both the two-crack case and the single crack case, the interaction
between a crack and the incident waves or reflecting waves is similar. In the earlier period of time, the SIF
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4

—— Two-crack solution
........ One-crack solution

SIF

0 2 4 6 8 10 12 14 16
T

Fig. 11. Normalized SIF versus normalized time assuming the permeable boundary conditions for 4, = 5k, a/h = 0.5 and Dh = 0.5.

— Two-crack solution
3 AN L One-crack solution

SIF

0 2 4 6 8 10 12 14 16
T

Fig. 12. Normalized SIF versus normalized time assuming the impermeable boundary conditions for 4, = 5k, a/h = 0.5 and Dh = 0.5

EDIF

0.5

— Two-crack solution
""" One-crack solution

0 2 4 6 8 10 12 14 16

Fig. 13. Normalized EDIF versus normalized time assuming the impermeable boundary conditions for 4, = 5h, a/h = 0.5 and

Dh =0.5.

solutions are almost the same, which indicates that the influence of crack interaction on the local stress
fields of the crack tip is negligible. However, the difference between the two solutions becomes obvious
when 7 > 2. The interaction of cracks will lead to the increase of the dynamic stress intensity factor.
Fig. 13 shows the solutions of the electric displacement intensity factor for both the cases. Again, one
observes that an overshoot phenomenon occurs, and is intensified due to the interaction of cracks.



X. Zhao | International Journal of Solids and Structures 41 (2004) 3653-3674 3673

4. Conclusions

A numerical method is developed for the inversion of the Laplace transform, and its accuracy is dem-
onstrated through examples. As an application of the method, the transient analysis of a piezoelectric
laminate with multiple interfacial cracks is performed. The solution procedures are based on the use of
integral transforms, singular integral equations and Chebyshev polynomial expansions. Numerical calcu-
lations are carried out to show the effect of crack geometry, applied electric fields, electric boundary
conditions along the crack faces, incident and reflecting waves on the time history of SIF and EDIF. The
following conclusions may be drawn:

(1) For both the permeable and impermeable boundary conditions, the dynamic SIF history sees the con-
tinuous action of incident and reflecting waves. The time to reach its maximum varies with the geometry
of the laminate and the wave speeds of materials.

(2) The influence of applied electric fields on the dynamic SIF history varies with time. When the action of
electro-elastic waves is prevalent, the presence of an electric field may lead to the increase or decrease of
SIF with increasing time, depending on the direction of the electric field and the loading process. When
the action of elastic waves is prevalent, the effect of electric fields is negligible.

(3) For the case of the impermeable boundary condition, an overshoot phenomenon exists for the electric
displacement intensity factor, and is intensified with the increase of crack length.

(4) The difference between the solutions of the permeable and impermeable electric boundary conditions is
obvious. However, this difference is not as significant as it is usually thought to be.

(5) The interaction of cracks will lead to the increase of both the dynamic stress intensity factor and the
electric displacement intensity factor.
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