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Abstract

A numerical method is developed for the inversion of Laplace transform, and its accuracy is shown through

examples. As an application of the method, the transient analysis of a piezoelectric laminate with multiple interfacial

cracks is performed. Both the permeable and impermeable boundary conditions are discussed. The solution procedures

are based on the use of integral transforms, singular integral equations and Chebyshev polynomial expansions.

Numerical results are provided to show the effect of crack geometry, applied electric fields, electric boundary conditions

along the crack faces and the wave fronts of incident waves or the reflecting waves from surface boundaries on the

resulting dynamic stress intensity factor and electric displacement intensity factor.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing usage of piezoelectric materials and composites as actuating and sensing devices in

advanced structural design to form a self-controlling and self-monitoring smart system, much attention has

been paid to the study of their dynamic fracture behavior in recent years. A comprehensive body of

knowledge exists addressing the responses of cracked piezoelectric materials and composites subjected to

steady state loading, and efforts have been made to achieve an in depth understanding of the electro-elastic

failure mechanism of the materials and composites with one single crack (see, e.g., Narita and Shindo, 1998,

1999), or with multiple cracks (see, e.g., Meguid and Wang, 1998; Wang and Meguid, 2000; Wang, 2001) as
well as with debonding (see, e.g., Zhao and Meguid, 2002).
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In engineering applications, piezoelectric materials and composites are often subjected to transient

loading, such as impact, explosion, and transient electric fields. However, very few works are concerned

with the transient response of cracked piezoelectric materials and composites. Among the limited studies, Li

and Mataga (1996a,b) investigated the problem of a semi-infinite crack propagating in an infinite piezo-
electric medium. They studied the effect of the propagating velocity of the crack on the crack tip fields.

Chen and Yu (1997), Chen and Karihaloo (1999) investigated the transient response of a finite crack in an

infinite piezoelectric medium under the action of anti-plane mechanical loads and in-plane electric dis-

placements. Meguid and Chen (2001), Wang and Yu (2000), and Shin et al. (2001) considered the dynamic

crack problem in a piezoelectric strip under electro-mechanical impact. Wang et al. (2000) analyzed a

cracked piezoelectric laminate subjected to electro-mechanical impact loads. In their recent work, Meguid

and Zhao (2002) studied the interface crack problem of bonded piezoelectric and elastic half space under

transient electro-mechanical loads.
From the analyses concerning the transient response of cracked piezoelectric materials and composites, it

can be seen that Laplace transform is usually utilized to suppress the dependence on time. In the transform

domain, the boundary value problems may be reduced to dual integral equations or a set of coupled

singular integral equations, which are solved by using the Copson–Sih�s method or Chebyshev polynomial

expansions. To invert the solutions to the physical plane, the inversion of Laplace transform must be made.

Presently, over twenty methods have been developed for the inversion. Among them both the Miller/

Guy�s method and the Durbin�s method were widely used in the field of dynamic fracture mechanics (see,

e.g., Chen and Yu, 1997; Chen and Karihaloo, 1999; Meguid and Chen, 2001; Wang and Yu, 2000; Shin
et al., 2001; Wen et al., 1996a,b). Narayanan and Beskos (1982) made a comparison study of these methods

and found that the best one of them is the Durbin�s method (Durbin, 1974). Though the Miller/Guy�s
method has been used in most of the existing studies concerning the dynamic fracture of piezoelectric

materials due to its simplicity, it is shown that this method cannot achieve good results and its accuracy is

usually poor in numerical calculation.

In the author�s practice, both the Miller/Guy�s method and the Durbin�s method were used to inves-

tigate the dynamic crack problems of piezoelectric materials. It was found that the Miller/Guy�s method

gave diverging and inaccurate results when a finite geometry was present (Meguid and Zhao, 2002). In
fact, the Miller/Guy�s method is based on the expansion of orthogonal polynomials which are smooth,

and therefore cannot describe correctly the interaction between cracks and the wave fronts of incident

waves or the reflecting waves from surface boundaries with only a few of expansion terms. Theoretically,

this drawback may be overcome by increasing the number of the terms. But, when the number exceeds 11,

the coefficients of the expansion become so small that a numerical instability happens. Moreover, this

method strongly depends on the choice of two parameters, and different choices may lead to quite dif-

ferent solutions.

As Naraynan and Beskos tested, the Durbin�s method can give reliable results in most cases. However,
this method still suffers from one drawback for long time inversion. Namely, the inversion may become

highly oscillatory or get away from the right solution with the increase of time in some cases.

In the present paper, an accurate method is developed for the inversion, which overcomes the drawback

of the Durbin�s method. Numerical results show that the proposed method can achieve more reliable

inversion than the Durbin�s method for long time inversion.

As an application of the method, the transient analysis of a piezoelectric laminate with multiple inter-

facial cracks is performed. Both the permeable and impermeable boundary conditions are discussed. The

solution procedures are based on the use of integral transforms, singular integral equations and Chebyshev
polynomial expansions. Numerical results are provided to show the effect of crack geometry, applied

electric fields, the electric boundary conditions along the crack faces, incident waves and the reflecting

waves from surface boundaries on the resulting dynamic stress intensity factor and electric displacement

intensity factor.
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2. Numerical inversion of Laplace transform

2.1. Method

Suppose that f ðtÞ is a real function of t, with f ðtÞ ¼ 0 for t < 0. The Laplace transform of the function

and its inversion are defined as follows:
f �ðpÞ ¼
Z 1

0

f ðtÞ expð�ptÞdt; ð1Þ

f ðtÞ ¼ 1

2pi

Z aþi1

a�i1
f �ðpÞ expðptÞdp; ð2Þ
where p is the complex transform parameter and a is a real number greater than the real parts of all sin-

gularities of f �ðpÞ.
When f �ðpÞ becomes known, the inversion may be obtained with the theory of complex analysis.

However, in the field of dynamic fracture analysis, f �ðpÞ is usually given at discrete points, and therefore the

integral in (2) cannot be analytically evaluated. As an alternative, numerical inversion is used.

Let p ¼ a þ ix, then we have (Durbin, 1974)
f ð0Þ ¼ 1

p

Z 1

0

Re½f �ða þ ixÞ	dx for t ¼ 0; ð3aÞ

f ðtÞ ¼ expðatÞ
p

Z 1

0

Re½f �ðaf þ ixÞ	 cosxt � Im½f �ða þ ixÞ	 sinxtgdx for t > 0: ð3bÞ
Durbin (1974) developed a method to calculate the above integrals numerically, which can be written as
f ðtÞ � 2 expðatÞ
T

*
� 1

2
Ref �ðaÞ þ

X1
k¼0

Re f � a

���
þ ik

2p
T

��
cos k

2p
T
t

� Im f � a

��
þ ik

2p
T

��
sin k

2p
T
t
	+

: ð4Þ
Formula (4) is valid over the interval ½0; T 	, and is formally equivalent to the application of the trape-

zoidal rule to (3a) and (3b), with the integration step being 2p=T . Practically, the infinite series can only be

summed up to a number NSUM of terms.

For short time inversion, this method always gives good results. The reason is that a short time solution

depends mainly on the large value of the transform parameter p (according to the initial-value theorem),

which indicates that a large interval of x is needed to calculate the integrals in (3a) and (3b). In this case,

since the time length T is short, 2p=T becomes large, and the summation in formula (4) covers a large
interval of x (with a fixed NSUM). Therefore, good results can be obtained.

However, the long time inversion with the method may become highly oscillatory or get away from the

right solution. As we know from the final-value theorem, a long time inversion depends mainly on the

initial value of p. That is to say, an accurate estimation of the integrals in (3a) and (3b) should be made over

the interval from 0 to a certain value of x, for example, x ¼ 5:0. To achieve this, a small integration step is

required. But, for a given time length, 2p=T is usually not small enough so that much error is induced.

This drawback arises from the use of a constant integration step. In fact, we do not need to do so. We

know that the transformed function f �ðpÞ has the property
f �ðpÞ ¼ Oðp�mÞ; jpj ! 1; m > 0; ð5Þ
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which implies that jf �ðpÞj may become small as jpj tends to a certain value, for example, jpj ¼ 50. This

property allows us to use different integration steps for calculating the integrals in (3a) and (3b) numeri-

cally, and thus, good accuracy can be achieved with much less effort. In the next, two algorithms are

developed.

Algorithm 1. Divide the integration interval into small sub-spaces, and denote the nodes with xk

(k ¼ 1; 2; . . . ;1). Then, the integrals in (3a) and (3b) become
f ð0Þ ¼ 1

p

X1
k¼1

Z xkþ1

xk

Re½f �ða þ ixÞ	dx for t ¼ 0; ð6aÞ
f ðtÞ ¼ expðatÞ
p

X1
k¼1

Z xkþ1

xk

fRe½f �ða þ ixÞ	 cosxt � Im½f �ða þ ixÞ	 sinxtgdx for t > 0: ð6bÞ
In each sub-space of ½xk;xkþ1	, we approximate Re½f �ða þ ixÞ	 and Im½f �ða þ ixÞ	 with linear functions

respectively, which are expressed as
Re½f �ða þ ixÞ	 � Fk þ
Fkþ1 � Fk
xkþ1 � xk

ðx � xkÞ; ð7aÞ
Im½f �ða þ ixÞ	 � Gk þ
Gkþ1 � Gk

xkþ1 � xk
ðx � xkÞ; ð7bÞ
where
Fk ¼ Re½f �ða þ ixkÞ	; Fkþ1 ¼ Re½f �ða þ ixkþ1Þ	; ð8Þ
Gk ¼ Im½f �ða þ ixkÞ	; Gkþ1 ¼ Im½f �ða þ ixkþ1Þ	: ð9Þ
Substituting (7a) and (7b) into (6a) and making a direct integration, we have
f ð0Þ �
X1
k¼1

ðFk þ Fkþ1ÞDk

2p
; ð10Þ
where Dk ¼ xkþ1 � xk.

The integral in (6b) can be evaluated by
f ðtÞ � expðatÞ
p

X1
k¼1

Fkþ1 sinxkþ1t � Fk sinxkt
t

�
þ Fkþ1 � Fk

Dk

cosxkþ1t � cosxkt
t2

þ Gkþ1 cosxkþ1t � Gk cosxkt
t

� Gkþ1 � Gk

Dk

sinxkþ1t � sinxkt
t2

	
: ð11Þ
Noting that x1 ¼ 0, and both Fk and Gk tend to zero as k ! 1, we finally have
f ðtÞ � expðatÞ
pt2

X1
k¼1

Fkþ1 � Fk
Dk

ðcosxkþ1t
�

� cosxktÞ �
Gkþ1 � Gk

Dk
ðsinxkþ1t � sinxktÞ

�
: ð12Þ
Formula (10) has the same precision as one when the trapezoidal rule is used. The error estimation for

(12) may be made as follows:



X. Zhao / International Journal of Solids and Structures 41 (2004) 3653–3674 3657
Error ¼ expðatÞ
p

X1
k¼1

Z xkþ1

xk

Re½f �ða
�

þ ixÞ	 � Fk

�
þ Fkþ1 � Fk

Dk
ðx � xkÞ

�	
cosxtdx

� expðatÞ
p

X1
k¼1

Z xkþ1

xk

Im½f �ða
�

þ ixÞ	 � Gk

�
þ Gkþ1 � Gk

Dk
ðx � xkÞ

�	
sinxtdx

¼ expðatÞ
2p

X1
k¼1

Z xkþ1

xk

d2

dx2
Ref �½af þ iðxk þ hkDkÞ	gðx � xkÞðx � xkþ1Þ cosxtdx

� expðatÞ
2p

X1
k¼1

Z xkþ1

xk

d2

dx2
Imf �½af þ iðxk þ hk1DkÞ	gðx � xkÞðx � xkþ1Þ sinxtdx

¼ � expðatÞD3
k

12p

X1
k¼0

d2

dx2
Ref �½a
n�

þ iðxk þ �hkDkÞ	
o
cosðxk þ �hkDkÞt

� d2

dx2
Imf �½a
n

þ iðxk þ �hk1DkÞ	
o
sinðxk þ �hk1DkÞt

�
; ð13Þ
where 0 < hk; �hk; hk1; �hk1 < 1.
Algorithm 2. Supposing that R is a large real number, we have
f ð0Þ ¼ 1

p
lim
R!1

Z R

0

Re½f �ða þ ixÞ	dx for t ¼ 0; ð14aÞ

f ðtÞ ¼ expðatÞ
p

lim
R!1

Z R

0

Re½f �ðaf þ ixÞ	 cosxt � Im½f �ða þ ixÞ	 sinxtgdx for t > 0: ð14bÞ
Divide ½0;R	 into n small sub-spaces, and the nodes are given by 0 ¼ x1 < x2 < � � � < xn < xnþ1 ¼ R.
Then, (14a) and (14b) can be expressed approximately as
f ð0Þ � 1

p

Xn
k¼1

Z xkþ1

xk

Re½f �ða þ ixÞ	dx for t ¼ 0; ð15aÞ

f ðtÞ � expðatÞ
p

Xn
k¼1

Z xkþ1

xk

Re½f �ðaf þ ixÞ	 cosxt � Im½f �ða þ ixÞ	 sinxtgdx for t > 0: ð15bÞ
In each sub-space of ½xk;xkþ1	 (k ¼ 1; 2; . . . ; n), The functions Re½f �ða þ ixÞ	 and Im½f �ða þ ixÞ	 are
approximated with Subbotin-splines respectively, that is (Cheney and Kincaid, 1985)
Re½f �ða þ ixÞ	 � Fk þ
1

2
ðZkþ1 þ ZkÞðx � skÞ þ

1

2Dk
ðZkþ1 � ZkÞðx � skÞ2; ð16aÞ

Im½f �ða þ ixÞ	 � Gk þ
1

2
ðYkþ1 þ YkÞðx � skÞ þ

1

2Dk
ðYkþ1 � YkÞðx � skÞ2; ð16bÞ
where
Dk ¼ xkþ1 � xk; ð17aÞ

sk ¼
1

2
ðxkþ1 þ xkÞ; ð17bÞ
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Fk ¼ Re½f �ða þ iskÞ	; ð17cÞ

Gk ¼ Im½f �ða þ iskÞ	: ð17dÞ
Zk (k ¼ 1; 2; . . . ; nþ 1) are determined by the following equations:
3D1Z1 þ D1Z2 ¼ 8ðF1 � F0Þ; ð18aÞ

Dk�1Zk�1 þ 3ðDk þ Dk�1ÞZk þ DkZkþ1 ¼ 8ðFk � Fk�1Þ ðk ¼ 2; 3; . . . ; nÞ; ð18bÞ

3DnZnþ1 þ DnZn ¼ 8ðFnþ1 � FnÞ; ð18cÞ
where F0 ¼ Re½f �ða þ ix1Þ	 and Fnþ1 ¼ Re½f �ða þ ixnþ1Þ	.
Yk (k ¼ 1; 2; . . . ; nþ 1) are determined by
3D1Y1 þ D1Y2 ¼ 8ðG1 � G0Þ; ð19aÞ

Dk�1Yk�1 þ 3ðDk þ Dk�1ÞYk þ DkYkþ1 ¼ 8ðGk � Gk�1Þ ðk ¼ 2; 3; . . . ; nÞ; ð19bÞ

3DnYnþ1 þ DnYn ¼ 8ðGnþ1 � GnÞ; ð19cÞ
where G0 ¼ Im½f �ða þ ix1Þ	 and Gnþ1 ¼ Im½f �ða þ ixnþ1Þ	.
Using the expressions (16a) and (16b) and making a direct integration to (15a) and (15b), we have
f ð0Þ � 1

p

Xn
k¼1

Fk

�
þ Dk

24
ðZkþ1 � ZkÞ

�
Dk; ð20aÞ

f ðtÞ � expðatÞ
p

1

t
g1ðtÞ

(
þ 1

t2
g2ðtÞ �

Xn
k¼1

1

t3Dk
ðZkþ1½ � ZkÞðsinxkþ1t � sinxktÞ

þ ðYkþ1 � YkÞðcosxkþ1t � cosxktÞ	
)
; ð20bÞ
where
g1ðtÞ ¼ Fn

�
þ 1

8
ðZn þ 3Znþ1ÞDn

�
sinxnþ1t þ

1

8
ðY2 þ 3Y1ÞD1 � G1 þ Gn

�
þ 1

8
ðYn þ 3Ynþ1ÞDn

�
cosxnþ1t;

ð21aÞ

g2ðtÞ ¼ �Z1 þ Znþ1 cosxnþ1t � Ynþ1 sinxnþ1t: ð21bÞ
Truncation error and interpolation error will be induced when using (20a) and (20b) for inversion. The

truncation error may be reduced as long as R is large enough. From the theory of spline functions, the

interpolation error due to (16a) or (16b) is of the order OðD3
maxÞ (Li and Qi, 1979), with

Dmax ¼ max jxkþ1 � xkj. Therefore, the error induced by (20a) or (20b) is of the order OðD4
maxÞ.

2.2. Examples

From formulas (10), (12), (20a) and (20b), it is seen that the lengths of all sub-spaces can be different,

which allows us to achieve good accuracy with less effort. Moreover, these formulas are derived from the
definition of an integral. Therefore, the summations in the formulas are always convergent when Dmax ! 0

and n ! 1.
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For practical applications, both Dmax and n are finite, and thus truncation error and interpolation error

are induced. Further, the errors are amplified by the factor expðatÞ=p in (12) and (20b), which means that

the errors tend to be infinite with the increase of time. To overcome this drawback, we fix aT to a definite

value, with T being the time length of inversion. In this way, the errors can always be kept in a reasonable
range when t < T . Then, the parameter a is determined. According to the definition of Laplace transform

and its inversion, a is a real number greater than the real parts of all singularities of f �ðpÞ. We have tried

many cases and found that good results can be obtained if it is taken as
a ¼ max½ReðpiÞ	 þ
5

T
;

where pi (i ¼ 1; 2; . . .) express all singular points of f �ðpÞ. The same a is also used in the Durbin�s method.
Three examples are given here:

Example 1. f �ðpÞ ¼ p�1, f ðtÞ ¼ HðtÞ.

Example 2. f �ðpÞ ¼ pðp2 þ 1Þ�2
, f ðtÞ ¼ ðt=2Þ sinðtÞ.

Example 3. f �ðpÞ ¼ ðp � 3Þ�1
, f ðtÞ ¼ expð3tÞ.

The time lengths are chosen to be T ¼ 20 for Examples 1 and 2, and T ¼ 4 for Example 3. In the

computation, the whole range of integration is divided into three intervals: ½0; 2:5	, ½2:5; 37:5	 and

½37:5; 897:5	. A constant step Dk ¼ 0:005 is used for all sub-spaces in ½0; 2:5	, while Dk ¼ 0:5 and Dk ¼ 2:0 are
taken for sub-spaces in ½2:5; 37:5	 and ½37:5; 897:5	, respectively. The total number of summations is 1000

terms.

Results are shown in Tables 1–3. It is shown that the present solutions agree well with exact ones.

However, the inversions of Examples 1 and 3 by using the Durbin�s method get away with the increase of

time.
Finally, it should be pointed out that the choice of integration steps has a great effect on the inversion.

Theoretically, smaller the integration steps are, more accurate the inversion will be. However, much

computation effort will be required, which is time consuming in the field of dynamic fracture mechanics.

For reference, we recommend the use of Table 4. To our practice, good accuracy can be obtained for t6 T
with values in this Table. To achieve better results, smaller integration steps are needed.
3. Application in dynamic fracture analysis of a piezoelectric laminate

3.1. Problem statement

Consider the problem of a piezoelectric laminate containing n interfacial collinear cracks, as shown in
Fig. 1. A set of Cartesian coordinates ðx; y; zÞ is chosen such that the x-axis is directed along the crack line

and y-axis is perpendicular to it. The poled piezoelectric strip, with the z-axis being the poling direction,

occupies the region ð�h < y < 0;�1 < x < þ1Þ.
In a previous paper (Zhao and Meguid, 2002), the author(s) discussed the dynamic behavior of the

laminate under steady-state electro-mechanical loading, and the dependency of both the local stress and

electrical fields at crack tips on frequencies of loading was examined. Here, the transient behavior of the

laminate is studied. Suppose that the laminate is initially stress free and at rest. At time t ¼ 0, a pair of

uniform shear stresses of s0HðtÞ suddenly appear on the surfaces of y ¼ �h and h1 (�1 < x < þ1),
respectively. A uniform in-plane electric displacement D0HðtÞ is also applied on the lower surface of the



Table 1

Inversion of the function f �ðpÞ ¼ p�1

t Algorithm 1 Algorithm 2 Durbin�s method Exact

0.00 0.50002454 0.49998200 0.50653049 1.00000000

1.00 0.99984388 0.99999402 1.00549358 1.00000000

2.00 0.99995698 1.00000370 1.00597629 1.00000000

3.00 1.00016226 1.00002421 1.00612267 1.00000000

4.00 0.99973049 1.00001323 1.00618855 1.00000000

5.00 1.00017907 0.99999158 1.00622859 1.00000000

6.00 0.99975946 0.99998448 1.00626599 1.00000000

7.00 0.99995896 0.99996924 1.00631770 1.00000000

8.00 0.99992645 1.00001701 1.00640245 1.00000000

9.00 0.99966112 1.00001107 1.00654564 1.00000000

10.00 1.00004361 1.00003587 1.00678511 1.00000000

11.00 0.99944320 0.99999743 1.00717982 1.00000000

12.00 1.00009414 0.99997066 1.00782468 1.00000000

13.00 0.99923983 0.99996375 1.00887807 1.00000000

14.00 0.99977563 0.99999187 1.01061669 1.00000000

15.00 0.99945386 1.00003359 1.01355593 1.00000000

16.00 0.99948358 1.00002965 1.01874996 1.00000000

17.00 0.99940670 1.00002235 1.02868949 1.00000000

18.00 0.99931966 0.99996898 1.05088628 1.00000000

19.00 0.99923481 0.99995546 1.12293998 1.00000000

20.00 0.99920029 0.99997784 75.17073028 1.00000000

Table 2

Inversion of the function f �ðpÞ ¼ pðp2 þ 1Þ�2

t Algorithm 1 Algorithm 2 Durbin�s method Exact

0.00 )0.00009131 0.00000218 0.06218747 0.00000000

1.00 0.42073715 0.42072545 0.47977090 0.42073549

2.00 0.90949537 0.90931095 0.90776061 0.90929743

3.00 0.21129895 0.21166887 0.14529924 0.21168001

4.00 )1.51309243 )1.51360309 )1.58679915 )1.51360499
5.00 )2.39762968 )2.39729723 )2.40758056 )2.39731069
6.00 )0.83785428 )0.83827882 )0.77051018 )0.83824649
7.00 2.29907174 2.29950339 2.38657029 2.29945310

8.00 3.95684237 3.95736997 3.98214155 3.95743299

9.00 1.85447616 1.85460021 1.78863406 1.85453318

10.00 )2.71993636 )2.72016580 )2.82025465 )2.72010555
11.00 )5.49808585 )5.49990224 )5.54135701 )5.49994614
12.00 )3.21897264 )3.21946065 )3.15882255 )3.21943751
13.00 2.73054498 2.73109266 2.84272087 2.73108574

14.00 6.93118737 6.93426442 6.99415956 6.93425149

15.00 4.87496126 4.87712892 4.82541788 4.87715880

16.00 )2.30199547 )2.30319122 )2.42416899 )2.30322653
17.00 )8.16699679 )8.17190744 )8.25152215 )8.17187868
18.00 )6.75430215 )6.75886561 )6.71963241 )6.75888522
19.00 1.42278407 1.42382934 1.55131243 1.42383349

20.00 9.12178084 9.12944158 9.22943796 9.12945251

3660 X. Zhao / International Journal of Solids and Structures 41 (2004) 3653–3674
piezoelectric strip at y ¼ �h and �1 < x < þ1. Further, it is assumed that the surface of the elastic
material is grounded.



Table 3

Inversion of the function f �ðpÞ ¼ ðp � 3Þ�1

t Algorithm 1 Algorithm 2 Durbin�s method Exact

0.00 0.50011 0.49990 0.51845 1.00000

0.20 1.82371 1.82227 1.85388 1.82212

0.40 3.32303 3.31988 3.37964 3.32012

0.60 6.05297 6.04981 6.15908 6.04965

0.80 11.02414 11.02337 11.22347 11.02318

1.00 20.07887 20.08441 20.45160 20.08554

1.20 36.57620 36.60217 37.26702 36.59823

1.40 66.64184 66.67833 67.90862 66.68633

1.60 121.44564 121.52586 123.74642 121.51042

1.80 221.34950 221.38227 225.50364 221.40642

2.00 403.45759 403.44949 410.95599 403.42879

2.20 735.35683 735.08906 748.97798 735.09519

2.40 1340.13471 1339.32859 1365.18590 1339.43076

2.60 2441.93443 2440.91071 2488.80487 2440.60198

2.80 4448.95332 4446.31800 4538.50014 4447.06675

3.00 8104.69090 8104.66910 8280.18378 8103.08393

3.20 14,762.71065 14,762.56279 15,119.63179 14,764.78157

3.40 26,892.87570 26,906.51289 27,656.99986 26,903.18607

3.60 48,993.56258 49,019.90264 50,814.33716 49,020.80114

3.80 89,268.45788 89,315.76271 95,000.68321 89,321.72336

4.00 162,675.32300 162,779.5352 4,606,743.89267 162,754.79142

Table 4

Choice of integration steps

x 2 ½0; 5	 x 2 ½5; 50	 x > 50

T 6 2:0 Dk 6
p
5T Dk 6

2p
T Dk ¼ ð1� 2Þ 2p

T
T > 2:0 Dk 6

p
5T Dk 6

2p
T Dk ¼ ð2� 10Þ 2p

T

Fig. 1. Geometric configuration of the problem.
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Because only the out-of-plane displacement and the in-plane electric fields are nonzero, the constitutive
relation for the piezoelectric material can be expressed as
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sxz ¼ c44
ow
ox

þ e15
o/
ox

; syz ¼ c44
ow
oy

þ e15
o/
oy

; ð22Þ
and
Dx ¼ e15
ow
ox

� j11

o/
ox

; Dy ¼ e15
ow
oy

� j11

o/
oy

; ð23Þ
where sxz and syz are the shear stress components, Dx and Dy are the electric displacements, w and / are the

mechanical displacement and electric potential, while c44, e15 and j11 are the elastic modulus, the piezo-

electric constant and the dielectric constant of the piezoelectric material, respectively.

The governing equations are given by:
r2w ¼ c�2
2

o2w
o2t

; j11r2/ ¼ e15r2w; ð24Þ
where c2 ¼
ffiffiffiffiffiffiffiffi
l=q

p
, with q being the density of the piezoelectric material and l ¼ c44 þ e215=j11.

The constitutive relation for the elastic material can be written as
sxz1 ¼ c441
ow1

ox
; syz1 ¼ c441

ow1

oy
; ð25Þ
where sxz1 and syz1 are the shear stress components, w1 and c441 are the displacement and the elastic

modulus, respectively. The governing equation is
r2w1 ¼ c�2
21

o2w1

ot2
; ð26Þ
in which c21 ¼
ffiffiffi
c

p
441=q1 and q1 ¼ the density of the elastic material.

This problem can be treated as the superposition of two sub-problems. Sub-problem (a) considers a

crack-free piezoelectric laminate under the action of s0HðtÞ and D0HðtÞ at y ¼ �h (�1 < x < þ1), and the
action of s0HðtÞ at y ¼ h1 (�1 < x < þ1). While sub-problem (b) concerns a piezoelectric laminate

containing multiple interfacial cracks, with the crack faces subjected to the electro-mechanical loads that

cancel out the stress and the electric displacement induced by sub-problem (a).

Laplace transform over time t is used to solve those two sub-problems. The solution of sub-problem (a)

can be easily obtained and therefore the detailed calculation is omitted. In the transform domain, the stress

and the electric displacement along the interface are found to be
�s�yzðx; 0; pÞ ¼
2s0g3ðpÞ � e15D0g4ðpÞ=k11

pg5ðpÞ
; ð27Þ

D
�
yðx; 0; pÞ ¼ D0=p; ð28Þ
where
g3ðpÞ ¼ expðph=c2Þ½1� expð2ph1=c21Þ	 þ
c21l
c2c441

expðph1=c21Þ½1� expð2ph=c2Þ	; ð29Þ

g4ðpÞ ¼ ½1� expð2ph1=c21Þ	½1� expðph=c2Þ	2; ð30Þ

g5ðpÞ ¼ ½1� expð2ph1=c21Þ	½1þ expð2ph=c2Þ	 þ
c21l
c2c441

½1� expð2ph=c2Þ	½1þ expð2ph1=c21Þ	: ð31Þ
The solution of sub-problem (b) can be derived with the help of Fourier transform over the space

variable x. The governing equations (24) and (26) yield
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w�ðx; y; pÞ ¼ 1

2p

Z 1

�1
½A1ðn; pÞ expð�cyÞ þ A2ðn; pÞ expðcyÞ	 expð�inxÞdn; ð32Þ

/�ðx; y; pÞ ¼ e15
j11

w�ðx; y; pÞ þ w�ðx; y; pÞ; ð33Þ

w�ðx; y; pÞ ¼ 1

2p

Z 1

�1
½A3ðn; pÞ expð�jnjyÞ þ A4ðn; pÞ expðjnjyÞ	 expð�inxÞdn; ð34Þ

w�
1ðx; y; pÞ ¼

1

2p

Z 1

�1
½A5ðn; pÞ expð�c1yÞ þ A6ðn; pÞ expðc1yÞ	 expð�inxÞdn; ð35Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2c�2

2

q
, c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2c�2

21

q
, and Ajðn; pÞ (j ¼ 1; . . . ; 6) are unknown functions.

By substituting the above expressions (32)–(35) into the constitutive relations, both the stresses and

electric displacements can be obtained.

To determine Ajðn; pÞ, we now consider the boundary conditions. For piezoelectric materials, the per-

meable and impermeable boundary conditions are usually used to model the electric boundary conditions

along the crack faces. From the physical viewpoint, these two boundary conditions represent two extreme

cases, with the permeable boundary condition being the case that the crack is completely conductive and
the impermeable boundary condition being the case that the crack is completely not conductive. Presently,

those two boundary conditions are examined and the corresponding discussions are presented in Sections

3.2 and 3.3, respectively.

3.2. Solution of the permeable crack problem

In this section, we consider the permeable crack problem. The boundary conditions in Laplace transform

domain can be written as
s�yz1ðx; h1; pÞ ¼ 0; �1 < x < 1; ð36aÞ

s�yz1ðx; 0; pÞ ¼ s�yzðx; 0; pÞ; �1 < x < 1; ð36bÞ

/�ðx; 0; pÞ ¼ 0; �1 < x < 1; ð36cÞ

s�yz1ðx; 0; pÞ ¼ ��s�yzðx; 0; pÞ; x 2 ðaq; bqÞ; ð36dÞ

w�ðx; 0; pÞ ¼ w�
1ðx; 0; pÞ; x 62 ðaq; bqÞ; ð36eÞ

s�yzðx;�h; pÞ ¼ 0; �1 < x < 1; ð36fÞ

D�
yðx;�h; pÞ ¼ 0; �1 < x < 1; ð36gÞ
where q ¼ 1; 2; . . . ; n.
The solution procedure is similar to the paper of Zhao and Meguid (2002). If we introduce the following

dislocation function by defining:
u�ðx; pÞ ¼ o½w�
1ðx; 0; pÞ � w�ðx; 0; pÞ	

ox
¼ 0 x 62 ðak; bkÞ

u�
kðx; pÞ x 2 ðak; bkÞ

�
ðk ¼ 1; 2; . . . ; nÞ: ð37Þ
Ajðn; pÞ (j ¼ 1; . . . ; 6) can be solved from the above boundary conditions and expressed with u�
kðx; pÞ.
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Define that
x ¼ bq � aq
2

uþ bq þ aq
2

¼ equþ dq; ð38Þ
then u�
kðx; pÞ (k ¼ 1; 2; . . . ; n) must satisfy the following integral equation:
Z 1

�1

u�
qðg; pÞ
g � u

dg þ
Xn
k¼1

Z 1

�1

Qqkðg; u; pÞu�
kðg; pÞdg ¼ � pðc44 þ c441Þ

c44c441
�s�yzðu; 0; pÞ; juj < 1 ðq ¼ 1; 2; . . . ; nÞ;

ð39Þ

and the single value condition
Z 1

�1

u�
qðg; pÞdg ¼ 0 ðq ¼ 1; 2; . . . ; nÞ; ð40Þ
where
Qqkðg; u; pÞ ¼
ek

ekg � equþ ðdk � dqÞ
� dqk

g � u

�
Z 1

0

ek
ðc44 þ c441Þc1F2ðn; pÞ

c44nF1ðn; pÞ

�
þ 1

�
sin½nðekg þ dkÞ � nðequþ dqÞ	dn; ð41Þ

F1ðn; pÞ ¼
e215
j11

jnj½1þ expð2chÞ	½1� expð2jnjhÞ	½1þ expð2c1h1Þ	

þ ½1þ expð2jnjhÞ	flc½1þ expð2c1h1Þ	½expð2chÞ � 1	 � c441c1½1� expð2c1h1Þ	½1þ expð2chÞ	g;
ð42Þ

F2ðn; pÞ ¼ ½1� expð2c1h1Þ	 lc½1
�

þ expð2jnjhÞ	½expð2chÞ � 1	 þ e215=j11jnj½1� expð2jnjhÞ	½1þ expð2chÞ	
�
;

ð43Þ

ek ¼
bk � ak

2
; dk ¼

bk þ ak
2

: ð44Þ
The solution of Eq. (39) can be written as
u�
kðg; pÞ ¼

X1
j¼0

BkjðpÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p TjðgÞ; ð45Þ
where TjðgÞ are Chebyshev polynomials of the first kind and BkjðpÞ are unknown functions of p. From the

orthogonality conditions of Chebyshev polynomials, the single value condition leads to Bk0ðpÞ ¼ 0.
Truncating the Chebyshev polynomials in Eq. (45) to the N th term and assuming that Eq. (39) is satisfied at

N collocation points along the crack faces,
um ¼ cos
mp
N þ 1

� �
ðm ¼ 1; 2; . . . ;NÞ: ð46Þ
Eq. (39) is reduced to a linear algebraic system of equations of the following form:
XN
j¼1

BqjðpÞ sin
mjp
N þ 1

� �
sin

mp
N þ 1

� ��
þ
Xn
k¼1

XN
j¼1

BkjðpÞLqkjðum; pÞ

¼ � c44 þ c441
c44c441

�s�yzðum; 0; pÞ ðm ¼ 1; 2; . . . ;N and q ¼ 1; 2; . . . ; nÞ; ð47Þ
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where
Lqkjðum; pÞ ¼
Z 1

�1

TjðgÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p Qqkðg; um; pÞdg: ð48Þ
Once BqjðpÞ are obtained from (47), Ajðn; pÞ (j ¼ 1; . . . ; 6) can be determined. Since the electric dis-

placement is continuous across crack faces, only the stress field at crack tips is singular. The dynamic stress

intensity factors of crack q can be evaluated using the following expressions:
KR�
III ¼ lim

x!bþq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bqÞ

q
s�yzðx; 0; pÞ ¼ � c44c441

c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbq � aqÞ

2

r X1
j¼1

BqjðpÞ; ð49Þ
KL�
III ¼ lim

x!a�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðaq � xÞ

q
s�yzðx; 0; pÞ ¼

c44c441
c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbq � aqÞ

2

r X1
j¼1

ð�1ÞjBqjðpÞ: ð50Þ
3.3. Solution of the impermeable crack problem

Consider now the impermeable crack problem. The boundary conditions for the problem can be ex-

pressed as
s�yz1ðx; h1; pÞ ¼ 0; �1 < x < 1; ð51aÞ
s�yz1ðx; 0; pÞ ¼ s�yzðx; 0; pÞ; �1 < x < 1; ð51bÞ
s�yzðx; 0; pÞ ¼ ��s�yzðx; 0; pÞ; x 2 ðaq; bqÞ; ð51cÞ
w�ðx; 0; pÞ ¼ w�
1ðx; 0; pÞ; x 62 ðaq; bqÞ; ð51dÞ
D�
yðx; 0; pÞ ¼ �D0=p; x 2 ðaq; bqÞ; ð51eÞ
/�ðx; 0; pÞ ¼ 0; x 62 ðaq; bqÞ; ð51fÞ
s�yzðx;�h; pÞ ¼ 0; �1 < x < 1; ð51gÞ
D�
yðx;�h; pÞ ¼ 0; �1 < x < 1: ð51hÞ
Introduce the following functions:
u�
1ðx; pÞ ¼

o

ox
½w�

1ðx; 0; pÞ � w�ðx; 0; pÞ	 ¼ 0 x 62 ðak; bkÞ;
u�

1kðx; pÞ x 2 ðak; bkÞ;

�
ð52Þ
u�
2ðx; pÞ ¼ � o/�ðx; 0; pÞ

ox
¼ 0 x 62 ðak; bkÞ;

u�
2kðx; pÞ x 2 ðak; bkÞ:

�
ð53Þ
According to Eqs. (51a)–(51h), Ajðn; pÞ (j ¼ 1; . . . ; 6) can be expressed with u�
1kðx; pÞ and u�

2kðx; pÞ. The
functions u�

1kðx; pÞ and u�
2kðx; pÞ must satisfy the following singular integral equations:
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Z 1

�1

u�
1qðg; pÞ
g � u

dg � e15
c441

Z 1

�1

u�
2qðg; pÞ
g � u

dg þ
Xn
k¼1

Z 1

�1

Q11qkðg; u; pÞu�
1kðg; pÞdg

�
Xn
k¼1

Z 1

�1

Q12qkðg; u; pÞu�
2kðg; pÞdg ¼ � pðc44 þ c441Þ

lc441
�s�yzðu; 0; pÞ
�

þ e15
k11

D0

p

�
; juj < 1; ð54Þ

�
Z 1

�1

u�
1qðg; pÞ
g � u

dg þ k11ðl þ c441Þ
e15c441

Z 1

�1

u�
2qðg; pÞ
g � u

dg þ
Xn
k¼1

Z 1

�1

Q21qkðg; u; pÞu�
1kðg; pÞdg

þ
Xn
k¼1

Z 1

�1

Q22qkðg; u; pÞu�
2kðg; pÞdg ¼ pðc44 þ c441Þ

e15c441

D0

p
; juj < 1; ð55Þ
and the single value conditions:
Z 1

�1

u�
1qðg; pÞdg ¼ 0;

Z 1

�1

u�
2qðg; pÞdg ¼ 0 ðq ¼ 1; 2; . . . ; nÞ; ð56Þ
where
Q11qkðg; u; pÞ ¼
ek

ekg � equþ ðdk � dqÞ
� dqk

g � u

�
Z 1

0

ek
c44 þ c441
c441

a11ðn; pÞ
�

þ 1

�
sin½nðekg þ dkÞ � nðequþ dqÞ	dn; ð57Þ

Q12qkðg; u; pÞ ¼
e15
c441

ek
ekg � equþ ðdk � dqÞ

�
� dqk

g � u

�

þ
Z 1

0

ek
c44 þ c441
c441

a12ðn; pÞ
�

� e15
c441

�
sin½nðekg þ dkÞ � nðequþ dqÞ	dn; ð58Þ

Q21qkðg; u; pÞ ¼ � ek
ekg � equþ ðdk � dqÞ

þ dqk
g � u

þ
Z 1

0

ek
k11ðc44 þ c441Þ

e15c441
a21ðn; pÞ

�
þ 1

�
sin½nðekg þ dkÞ � nðequþ dqÞ	dn; ð59Þ

Q22qkðg; u; pÞ ¼
k11ðl þ c441Þ

e15c441

ek
ekg � equþ ðdk � dqÞ

�
� dqk

g � u

�

þ
Z 1

0

ek
k11ðc44 þ c441Þ

e15c441
a22ðn; pÞ

�
� k11ðl þ c441Þ

e15c441

�
sin½nðekg þ dkÞ � nðequþ dqÞ	dn:

ð60Þ
The expressions of a11ðn; pÞ, a12ðn; pÞ, a21ðn; pÞ and a22ðn; pÞ are the same as those of the paper of Zhao and

Meguid (2002).

In a similar fashion to Section 3.2, the functions u�
1kðg; pÞ and u�

2kðg; pÞ are defined in terms of the

Chebyshev polynomials:
u�
1kðg; pÞ ¼

X1
j¼0

BkjðpÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p TjðgÞ; u�
2kðg; pÞ ¼

X1
j¼0

EkjðpÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p TjðgÞ: ð61Þ
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From (56), it follows that Bk0 ¼ Ek0 ¼ 0. BkjðpÞ and EkjðpÞ can be determined from the following algebraic

equations:
XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5BqjðpÞ � e15

c441

XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5EqjðpÞ þXn

k¼1

XN
j¼1

L11qkjðum; pÞBkjðpÞ

�
Xn
k¼1

XN
j¼1

L12qkjðum; pÞEkjðpÞ ¼ � c44 þ c441
lc441

�s�yzðum; 0; pÞ
�

þ e15
k11

D0

p

�
; ð62Þ

�
XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5BqjðpÞ þ k11ðl þ c441Þ

e15c441

XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5EqjðpÞ þXn

k¼1

XN
j¼1

L21qkjðum; pÞBkjðpÞ

þ
Xn
k¼1

XN
j¼1

L22qkjðum; pÞEkjðpÞ ¼
c44 þ c441
e15c441

D0

p
ðq ¼ 1; 2; . . . ; n and m ¼ 1; 2; . . . ;NÞ; ð63Þ
where
Lrsqkjðum; pÞ ¼
Z 1

�1

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p Qrsqkðg; um; pÞTjðgÞdg ðr; s ¼ 1; 2Þ: ð64Þ
The dynamic stress intensity factors and electric displacement intensity factors of crack q are defined as

follows:
KR�
III ¼ lim

x!bþq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bqÞ

q
s�yzðx; 0; pÞ

¼ l
c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbq � aqÞ

2

r  
� c441

X1
j¼1

BqjðpÞ þ e15
X1
j¼1

EqjðpÞ
!

� e15
j11

KR�
D ðpÞ; ð65Þ

KR�
D ðpÞ ¼ lim

x!bþq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bqÞ

q
D�
yðx; 0; pÞ

¼ 1

c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbq � aqÞ

2

r "
� e15c441

X1
j¼1

BqjðpÞ þ k11ðl þ c441Þ
X1
j¼1

EqjðpÞ
#
; ð66Þ

KL�
IIIðpÞ ¼ lim

x!a�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðaq � xÞ

q
s�yzðx; 0; pÞ

¼ l
c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbq � aqÞ

2

r
c441

X1
j¼1

ð
"

� 1ÞjBqjðpÞ � e15
X1
j¼1

ð � 1ÞjEqjðpÞ
#
� e15

j11

KL�
D ðpÞ; ð67Þ

KL�
D ðpÞ ¼ lim

x!a�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðaq � xÞ

q
D�
yðx; 0; pÞ

¼ 1

c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbq � aqÞ

2

r
e15c441

X1
j¼1

ð
"

� 1ÞjBqjðpÞ � k11ðl þ c441Þ
X1
j¼1

ð � 1ÞjEqjðpÞ
#
: ð68Þ
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3.4. Numerical results and discussion

Numerical calculations have been carried out to show the influence of the pertinent parameters. In the

following calculations, the piezoelectric material is assumed to be PZT-4, and the elastic material is alu-
minium. Their elastic, piezoelectric and dielectric properties are as follows (Narita and Shindo, 1999):
Fig. 2.

with h
c44 ¼ 2:56� 1010 N=m2; e15 ¼ 12:7 C=m2; j11 ¼ 64:6� 10�10 C=vm; q ¼ 7500 kg=m3;

c441 ¼ 2:65� 1010 N=m2; q1 ¼ 2706 kg=m3:
The convergence of the expansions in (45) and (61) has been checked by Zhao and Meguid (2002), and it

is found that good convergence can be reached when the expansion number exceeds 15 terms. In the present
case, 20 terms are used.
3.4.1. Single crack solution

In this section, we restrict our attention to the single crack solution. It is assumed that a1 ¼ �a and

b1 ¼ a. Numerical results are shown in Figs. 2–10. In these Figures, normalized parameters are used with

SIF ¼ KR
IIIðtÞ=ðs0

ffiffiffiffiffiffi
pa

p
Þ, EDIF ¼ KR

DðtÞ=ðD0

ffiffiffiffiffiffi
pa

p
Þ, T ¼ c2t=h and Dh ¼ e15D0=ðj11s0Þ.

Fig. 2 shows the comparison between the solutions obtained by using the Durbin�s method and the
present method. It is seen that before T ¼ 12, two methods give comparable results. When T > 12, the

solution from the Durbin�s method begins to oscillate, while the present solution keeps stable.

The interaction between the crack and the incident waves or reflecting waves is also clearly shown.

Before T ¼ 1, the incident wave from the lower surface does not arrive and SIF is zero. After the arrival of

the incident wave at T ¼ 1, the SIF begins to rise with increasing time, and reaches a peak, then decreases

until the arrival of the first reflecting wave from the lower surface (T ¼ 3). The later period of time from

T ¼ 3 to T ¼ 8:1 sees the action of multiple reflecting waves. With the arrival of the incident wave from the

top surface, a rapid increase of the SIF is induced. The SIF reaches a maximum about 2.7 at T ¼ 9:4, and
an indication is that the laminate may be damaged at this time.

Figs. 3–5 are concerned with the results of the permeable crack problem. Specifically, Fig. 3 presents the

influence of the strip height on the stress intensity factor. By reducing h1, the peak of the SIF will appear

earlier, which reflects the earlier arrival of the incident wave from the top surface. When h1 ¼ 2h, an
oscillatory vibration is observed. Clearly, this is due to the continuous action of multiple reflecting waves.

In Fig. 4, the influence of the applied electric fields on the dynamic SIF history is shown. It is seen that

this effect varies with time. In the periods from T ¼ 1 to T ¼ 4 and from T ¼ 8 to T ¼ 11, the SIF is induced

mainly by the electro-elastic waves from the piezoelectric material, and the action of the electric fields is
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Fig. 3. Normalized SIF versus normalized time for various h1 assuming the permeable boundary condition with a=h ¼ 0:5 and Dh ¼ 0.
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Fig. 4. Normalized SIF versus normalized time for various electro-mechanical loads assuming the permeable boundary condition with

h1 ¼ 5h and a=h ¼ 0:5.
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Fig. 5. Normalized SIF versus normalized time for various a=h assuming the permeable boundary condition with h1 ¼ 5h and

Dh ¼ 0:5.
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obvious, which may lead to the increase or decrease of The SIF. This means that both a positive electric

field and a negative electric field can retard or promote the propagation of a crack. The other periods of

time see mainly the action of the elastic waves from the upper strip, and as a result the effect of the electric
fields is negligible.

Fig. 5 displays the variation of the SIF with various a=h at Dh ¼ 0:5.
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Fig. 6. Normalized SIF versus normalized time for various h1 assuming the impermeable boundary condition with a=h ¼ 0:5 and

Dh ¼ 0.
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Fig. 7. Normalized SIF versus normalized time for various electro-mechanical loads assuming the impermeable boundary condition

with h1 ¼ 5h and a=h ¼ 0:5.
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Fig. 8. Normalized SIF versus normalized time for various a=h assuming the impermeable boundary condition with h1 ¼ 5h and

Dh ¼ 0:5.
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Figs. 6–9 are concerned with the results of the impermeable crack problem. Generally, similar obser-
vations may be made from Figs. 6–8. In Fig. 7, one can see that the SIF may be induced by electric fields
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alone, which is shown before the arrival of the incident electro-elastic waves. It is noticed that at T ¼ 0 the

SIF has a jump and then keeps almost a constant. From Figs. 6 and 8, one can deduce the influence of the

strip height and a=h on the SIF history, respectively.

Fig. 9 displays the time history of the electric displacement intensity factor with various a=h at Dh ¼ 0:5.
In this Figure, a dynamic overshoot phenomenon is observed. Moreover, the phenomenon is intensified

with the increase of a=h. This is quite different from the earlier results obtained in Chen and Yu (1997),

Chen and Karihaloo (1999), Meguid and Chen (2001), Wang and Yu (2000), and Wang et al. (2000), where

the electric displacement intensity factor is in the form of a Heaviside step function.
Finally, a comparison between the solutions of the local stress field for the permeable and impermeable

conditions is made in Fig. 10. Obviously, one can see the difference induced by the two electric boundary

conditions along the crack faces. However, the difference is not as significant as it is usually thought to be in

this case.

3.4.2. Interacting cracks

We now present the results of the two-crack solution. It is assumed that a1 ¼ �a, b1 ¼ a, a2 ¼ 2a and

b2 ¼ 4a. The resulting SIF and EDIF at the inner tip of crack one are shown in Figs. 11–13. The corre-

sponding single crack solution is also depicted for comparison.

It is seen from Figs. 11 and 12 that for both the two-crack case and the single crack case, the interaction
between a crack and the incident waves or reflecting waves is similar. In the earlier period of time, the SIF
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Fig. 11. Normalized SIF versus normalized time assuming the permeable boundary conditions for h1 ¼ 5h, a=h ¼ 0:5 and Dh ¼ 0:5.
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Fig. 12. Normalized SIF versus normalized time assuming the impermeable boundary conditions for h1 ¼ 5h, a=h ¼ 0:5 and Dh ¼ 0:5.
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Fig. 13. Normalized EDIF versus normalized time assuming the impermeable boundary conditions for h1 ¼ 5h, a=h ¼ 0:5 and
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solutions are almost the same, which indicates that the influence of crack interaction on the local stress

fields of the crack tip is negligible. However, the difference between the two solutions becomes obvious

when T > 2. The interaction of cracks will lead to the increase of the dynamic stress intensity factor.

Fig. 13 shows the solutions of the electric displacement intensity factor for both the cases. Again, one

observes that an overshoot phenomenon occurs, and is intensified due to the interaction of cracks.
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4. Conclusions

A numerical method is developed for the inversion of the Laplace transform, and its accuracy is dem-

onstrated through examples. As an application of the method, the transient analysis of a piezoelectric
laminate with multiple interfacial cracks is performed. The solution procedures are based on the use of

integral transforms, singular integral equations and Chebyshev polynomial expansions. Numerical calcu-

lations are carried out to show the effect of crack geometry, applied electric fields, electric boundary

conditions along the crack faces, incident and reflecting waves on the time history of SIF and EDIF. The

following conclusions may be drawn:

(1) For both the permeable and impermeable boundary conditions, the dynamic SIF history sees the con-

tinuous action of incident and reflecting waves. The time to reach its maximum varies with the geometry
of the laminate and the wave speeds of materials.

(2) The influence of applied electric fields on the dynamic SIF history varies with time. When the action of

electro-elastic waves is prevalent, the presence of an electric field may lead to the increase or decrease of

SIF with increasing time, depending on the direction of the electric field and the loading process. When

the action of elastic waves is prevalent, the effect of electric fields is negligible.

(3) For the case of the impermeable boundary condition, an overshoot phenomenon exists for the electric

displacement intensity factor, and is intensified with the increase of crack length.

(4) The difference between the solutions of the permeable and impermeable electric boundary conditions is
obvious. However, this difference is not as significant as it is usually thought to be.

(5) The interaction of cracks will lead to the increase of both the dynamic stress intensity factor and the

electric displacement intensity factor.
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